RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

SECOND YEAR B.A./B.Sc. FOURTH SEMESTER (January – June) 2015 Mid-Semester Examination, March 2015

Date : 18/03/2015

CHEMISTRY (Honours)

Time : 11 am – 1 pm

Paper : IV

Full Marks : 50

[2]

[1]

[Use a separate answer book for each group] Group – A

Attempt any one question :

- 1. a) Define 'ionic mobility' of an ion. At 18°C, ionic mobilities of NH_4^+ and CIO_3^- ions are 6.6×10^{-4} and 5.7×10^{-4} cm²volt⁻¹s⁻¹ respectively. Calculate Λ° of the salt and transport number of chlorate ion. [1+2]
 - b) Find out the value of ionic product of water at 25°C from the given data. At 25°C, Λ° of water is $548 \cdot 1 \times 10^{-4} \text{Sm}^2 \text{mol}^{-1}$ and κ is $5 \cdot 5 \times 10^{-6} \text{Sm}^{-1}$. Use unit standard concentration as 1 moldm⁻³. [3]
 - c) Form an electrochemical cell having the cell reaction $H_2O = H^+ + OH^-$. The value of E° of the right hand electrode of this cell is -0.828 volt at 25°C. What useful information can you get about the system besides the cell emf? [2]

2. a) Discuss the moving boundary method of determination of ionic transport number.

- b) Equivalent conductances at infinite dilution of HCl, NaCl and CH_3CO_2Na are 426.2, 126.5 and 91 Scm^2equiv^{-1} . A cell filled with 0.01 M KCl solution has a resistance of 257.3 ohm at 25°C. The same cell filled with 0.2 M acetic acid solution has a resistance of 508.6 ohm at 25°C. Specific conductance of 0.01 M KCl solution is $1.41 \times 10^{-3} Scm^{-1}$. Calculate the dissociation constant of the acid. [3]
- c) The emf of the cell Zn|ZnCl₂ (m = 0.01021) |AgCl(s)|Ag is found to be 1.1566 volt at 25°C. Find out the mean activity and the mean activity coefficient of ZnCl₂ in this solution at 25°C. Given, E° of Zn⁺² | Zn electrode is -0.763 volt at 25°C. [3]

Attempt any one question :

- 3. a) Starting with the condition for solid-liquid equilibrium, deduce the condition under which a solvent's freezing point might be elevated due to the dissolution of solute in it. [3]
 - b) Justify or criticize —phenomena like freezing point depression or boiling point elevation are consequences of solute-solvent interaction. [2]
 - c) Offer a qualitative explanation to the phenomena of boiling point elevation of a solvent due to solute dissolved in it in the light of entropy change of the process. [3]
- 4. a) Draw and explain the nature of a μ vs T curve for the three states of a pure substance. [3]
 - b) Point out the boiling and the freezing points in the above diagram.
 - c) Draw and explain how the above diagram changes when a solute is added to the liquid state of the substance. (Assume that this solute does not go to the solid or vapor phase). [2+1]
 - d) Show in the diagram how the boiling and the freezing points of the solvent changes due to the solute. [1]

<u>Group – B</u>

Attempt any one question :

5. a) Predict the major product of the following reactions :

b) Give retrosynthetic analysis and an efficient synthesis of the following starting from RASM. $[2\times 2]$

ii)

ii)

c) Predict the products with mechanism :

6. a) Carryout the following conversions :

b) Predict the products of the following reactions with mechanism.

iv) H

[4×2]

[1×4]

[4×2]

OH

<u>Group – C</u>

Attempt any one question :

7.	a)	Why is N(SiH ₃) ₃	and N($(CH_3)_3$ on	reaction	with	HCl	give	different	products?	Explain	with
		equations.										[2.5]

- b) Why the molecular formula of nitrogen and phosphorous is different? Explain chemically and thermodynamically (Given bond energy in KJ mol⁻¹] $P \equiv P 490$, $N \equiv N 946$, P P = 209 and N N = 160. [2.5]
- 8. a) Briefly explain the proton affinity of NH₃, PH₃ and AsH₃ and the stability of their ium salts at water. [3]
 - b) Comment about the Ligand properties of NF_3 and PF_3 with example(s). [2]

Attempt any one question :

9.	a)	Melting points of tin halides are given below. SnF ₄ [705°C], SnCl ₄ [-33°C], SnBr ₄ [31°C], Sn	I_4
		[144·5°C]. Explain the order.	[3]
	b)	Silanes have good thermal stability and water repellant property. Explain.	[2]
	c)	Catenation in silanes are found to be much less than that in alkanes. Explain.	[2]

- 10. a) When SnF₂ is added to an aqueous solution containing fluride ions, a set of anions are produced.
 Write down the structure of these anions [upto trimers] stating their mode of hybridisation. [3]
 - b) Explain the action of conc. HNO₃ on red lead.
 - c) Explain the electrical conductivity of graphite. The conductivity increases after intercalation with alkali metals. Justify. [2]

[2]

[3×2]

Attempt <u>any three</u> questions :

- 11. a) Explain why a solution of borax is a good buffer solution.
 - b) AlF_3 dissolves appreciably in anhydrous HF, only when KF is also present. But AlF_3 is reprecipitated when BF_3 is passed into the solution.
 - c) What happens when B_2H_6 is separately treated with NH_3 and PH_3 ?
 - d) All synthesis of BH_3 , result formation of B_2H_6 , explain.
 - e) What happens when chlorine water is added to an aqueous solution of KBr and the mixture is shaken with CCl₄?
 - f) Neither BrF_3 nor ClF_3 are good conductors of electricity but a mixture of the two makes a good conductor, explain.

_____ × _____